

timecorr: A Python toolbox for calculating dynamic correlations and exploring higher order correlations

[image: _images/100_factors.gif]

TimeCorr

The TimeCorr toolbox provides tools for computing and exploring the correlational structure of timeseries data.

Index

 M
 | S
 | T
 | V
 | W

M

 	
 	mat2vec() (in module timecorr)

S

 	
 	simulate_data() (in module timecorr)

T

 	
 	timecorr() (in module timecorr)

V

 	
 	vec2mat() (in module timecorr)

W

 	
 	wcorr() (in module timecorr)

API reference

Timecorr

	timecorr(data[, weights_function, …])

	Computes dynamics correlations in single-subject or multi-subject data.

Simulations

	simulate_data([datagen, return_corrs, …])

	Simulate timeseries data

Helpers

	wcorr(a, b, weights)

	Compute moment-by-moment correlations between sets of observations

	mat2vec(m)

	Function that converts correlation matrix to a vector

	vec2mat(v)

	Function that converts vector back to correlation matrix

timecorr.mat2vec

	
timecorr.mat2vec(m)

	Function that converts correlation matrix to a vector

	Parameters

	
	mndarray

	Correlation matix

	Returns

	
	resultndarray

	Vector

timecorr.simulate_data

	
timecorr.simulate_data(datagen='ramping', return_corrs=False, set_random_seed=False, S=1, T=100, K=10, B=5)

	Simulate timeseries data

	Parameters

	
	datagenstr

	
	Data generation function. Options:

	
	ramping

	block

	constant

	random

	return_corrsbool

	If true, returns the correlations used to create the data

	set_random_seedbool or int

	Default False (choose a random seed). If True, set random seed to 123. If int, set random seed to the specified value.

	Sint

	Number of subjects.

	Tint

	Total time

	Kint

	Number of features

	Bint

	Number of blocks

	Returns

	
	datanp.ndarray

	A samples by number of electrodes array of simulated iEEG data

	sub_locspd.DataFrame

	A location by coordinate (x,y,z) matrix of simulated electrode locations

timecorr.timecorr

	
timecorr.timecorr(data, weights_function=<function gaussian_weights at 0x7fa7cef4a620>, weights_params=None, include_timepoints='all', exclude_timepoints=None, combine=<function null_combine at 0x7fa7cfa0c378>, cfun=<function isfc at 0x7fa7cfa0c048>, rfun=None)

	Computes dynamics correlations in single-subject or multi-subject data.

	Parameters

	
	data: numpy array, pandas dataframe, or a list of numpy arrays/dataframes

	Each numpy array (or dataframe) should have size timepoints by features.
If a list of arrays are passed, there should be one array per subject.

	weights_function: a function of the form func(T, params) where

	T is a non-negative integer specifying the number of timepoints to consider.

The function should return a T by T array containing the timepoint-specific
weights for each consecutive time point from 0 to T (not including T).

Default: gaussian_weights; options: laplace_weights, gaussian_weights,
t_weights, eye_weights, mexican_hat_weights

	weights_params: used to pass parameters to the weights_params function. This

	can be specified in any format (e.g. a scalar, list, object, dictionary,
etc.).

Default: None (use default parameters for the given weights function).
Options: gaussian_params, laplace_params, t_params, eye_params,
mexican_hat_params.

	include_timepoints: determines which timepoints are used to estimate the correlations

	at each timepoint. This is applied after the weights function to further constrain
which timepoints may be considered in computing the correlations at each timepoint.

Options: ‘all’ (default; include all timepoints), ‘pre’ (only include timepoints before
the given timepoint), ‘post’ (only include timepoints after the given timepoint).

	exclude_timepoints: additional option, used to filter out any timepoints less than x units

	of the timepoint whose correlations are being estimated. For example, passing
exclude_timepoints=3 will exclude any timepoints 3 or more samples from the given timepoint.
When exclude timepoints is negative, it works inversely– e.g. exclude_timepoints=-5 will
exclude any timepoints within 5 or fewer samples of the given timepoint. Real-valued scalars
are supported but are rounded to the nearest Integer.

Default: None (no filtering).

	combine: a function applied to either a single matrix of vectorized correlation

	matrices, or a list of such matrices. The function should return either
a numpy array or a list of numpy arrays.

Default: helpers.null_combine (a function that returns its input). Other
useful functions:

helpers.corrmean_combine: take the element-wise average correlations across matrices
helpers.tstat_combine: return element-wise t-statistics across matrices

	cfun: function to apply to the data array(s)

	This function should be of the form
func(data, weights)

The function should support data as a numpy array or list of numpy
arrays. When a list of numpy arrays is passed, the function should
apply the “across subjects” version of the analysis. When a single
numpy array is passed, the function should apply the “within subjects”
version of the analysis.

weights is a numpy array with per-timepoint weights

The function should return a single numpy array with 1 row and an
arbitrary number of columns (the number of columns may be determined by
the function).

Default: A continuous verison of Inter-Subject Functional Connectivity
(Simony et al. 2017). If only one data array is passed (rather than a
list), the default cfun returns the moment-by-moment correlations for
that array. (Reference: http://www.nature.com/articles/ncomms12141)

	rfun: function to use for dimensionality reduction.

	All hypertools and scikit-learn functions are supported: PCA, IncrementalPCA, SparsePCA,
MiniBatchSparsePCA, KernelPCA, FastICA, FactorAnalysis, TruncatedSVD,
DictionaryLearning, MiniBatchDictionaryLearning, TSNE, Isomap,
SpectralEmbedding, LocallyLinearEmbedding, MDS, and UMAP.

Can be passed as a string, but for finer control of the model
parameters, pass as a dictionary, e.g.
reduction={‘model’ : ‘PCA’, ‘params’ : {‘whiten’ : True}}.

See scikit-learn specific model docs for details on parameters supported
for each model.

Another option is to use graph theoretic measures computed for each node.
The following measures are supported (via the brainconn toolbox):
eigenvector_centrality, pagerank_centrality, and strength. (Each
of these must be specified as a string; dictionaries not supported.)

Default: None (no dimensionality reduction)

	Returns

	
	corrmats: moment-by-moment correlations

	

timecorr.vec2mat

	
timecorr.vec2mat(v)

	Function that converts vector back to correlation matrix

	Parameters

	
	resultndarray

	Vector

	Returns

	
	mndarray

	Correlation matix

timecorr.wcorr

	
timecorr.wcorr(a, b, weights)

	Compute moment-by-moment correlations between sets of observations

	Parameters

	
	a – a number-of-timepoints by number-of-features observations matrix

	b – a number-of-timepoints by number-of-features observations matrix

	weights – a number-of-timepoints by number-of-timepoints weights matrix
specifying the per-timepoint weights to be considered (for each timepoint)

	Returns

	a a.shape[1] by b.shape[1] by weights.shape[0] array of per-timepoint
correlation matrices.

How to use the timecorr package

Introduction to timecorr

	Using timecorr

	Load in required libraries

	Simulate some data

	Calculate dynamic correlations

	Higher order correlations

Note

Click here to download the full example code

Calculate dynamic correlations

In this example, we calculate dynamic correlations

Code source: Lucy Owen
License: MIT

load timecorr and other packages
import timecorr as tc
import numpy as np

S = 1
T = 1000
K = 10
B = 5

define your weights parameters
width = 100
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}

calculate the dynamic correlation of the two datasets

subs_data_2 = tc.simulate_data(datagen='ramping', return_corrs=False, set_random_seed=1, S=S, T=T, K=K, B=B)

subs_data_1 = tc.simulate_data(datagen='ramping', return_corrs=False, set_random_seed=2, S=S, T=T, K=K, B=B)

wcorred_data = tc.wcorr(np.array(subs_data_1), np.array(subs_data_2), weights=laplace['weights'](T))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: calculate_dynamic_correlations.py

Download Jupyter notebook: calculate_dynamic_correlations.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Decode by level

In this example, we load in some example data, and decode by level of higher order correlation.

Code source: Lucy Owen
License: MIT

load timecorr and other packages
import timecorr as tc
import hypertools as hyp
import numpy as np

load example data
data = hyp.load('weights').get_data()

define your weights parameters
width = 10
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}

set your number of levels
if integer, returns decoding accuracy, error, and rank for specified level
level = 2

run timecorr with specified functions for calculating correlations, as well as combining and reducing
results = tc.timepoint_decoder(np.array(data), level=level, combine=tc.corrmean_combine,
 cfun=tc.isfc, rfun='eigenvector_centrality', weights_fun=laplace['weights'],
 weights_params=laplace['params'])

returns only decoding results for level 2
print(results)

set your number of levels
if list or array of integers, returns decoding accuracy, error, and rank for all levels
levels = np.arange(int(level) + 1)

run timecorr with specified functions for calculating correlations, as well as combining and reducing
results = tc.timepoint_decoder(np.array(data), level=levels, combine=tc.corrmean_combine,
 cfun=tc.isfc, rfun='eigenvector_centrality', weights_fun=laplace['weights'],
 weights_params=laplace['params'])

returns decoding results for all levels up to level 2
print(results)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: decode_by_level.py

Download Jupyter notebook: decode_by_level.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Optimized weights by level for decoding

In this example, we load in some example data, and find optimal level weights for decoding.

Code source: Lucy Owen
License: MIT

load timecorr and other packages
import timecorr as tc
import hypertools as hyp
import numpy as np

load example data
data = hyp.load('weights').get_data()

define your weights parameters
width = 10
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}

set your number of levels
if integer, returns decoding accuracy, error, and rank for specified level
level = 2

run timecorr with specified functions for calculating correlations, as well as combining and reducing
results = tc.weighted_timepoint_decoder(np.array(data), level=level, combine=tc.corrmean_combine,
 cfun=tc.isfc, rfun='eigenvector_centrality', weights_fun=laplace['weights'],
 weights_params=laplace['params'])

returns optimal weighting for mu for all levels up to 2 as well as decoding results for each fold
print(results)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: decode_by_weighted_level.py

Download Jupyter notebook: decode_by_weighted_level.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Optimized weights by level for decoding

In this example, we load in some example data, and find optimal level weights for decoding.

Code source: Lucy Owen
License: MIT

load timecorr and other packages
import timecorr as tc
import hypertools as hyp
import numpy as np

load helper functions
from timecorr.helpers import isfc, corrmean_combine

load example data
data = hyp.load('weights').get_data()

define your weights parameters
width = 10
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}

set your number of levels
if integer, returns decoding accuracy, error, and rank for specified level
level = 2

run timecorr with specified functions for calculating correlations, as well as combining and reducing
results_1 = tc.weighted_timepoint_decoder(np.array(data), level=level, combine=corrmean_combine,
 cfun=isfc, rfun='eigenvector_centrality', weights_fun=laplace['weights'],
 weights_params=laplace['params'])

results_2 = tc.weighted_timepoint_decoder(np.array(data), level=level, combine=corrmean_combine,
 cfun=isfc, rfun='eigenvector_centrality', weights_fun=laplace['weights'],
 weights_params=laplace['params'], random_init=True)

returns optimal weighting for mu for all levels up to 2 as well as decoding results for each fold
print(results_1)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: decode_by_weighted_randinit.py

Download Jupyter notebook: decode_by_weighted_randinit.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Gallery of Examples

[image: ../_images/sphx_glr_calculate_dynamic_correlations_thumb.png]
Calculate dynamic correlations

[image: ../_images/sphx_glr_plot_simulate_data_thumb.png]
Simulate subject data

[image: ../_images/sphx_glr_decode_by_weighted_level_thumb.png]
Optimized weights by level for decoding

[image: ../_images/sphx_glr_plot_explore_kernels_thumb.png]
Explore kernels

[image: ../_images/sphx_glr_decode_by_level_thumb.png]
Decode by level

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Explore kernels

In this example, we plot the kernel options provided.

[image: ../_images/sphx_glr_plot_explore_kernels_001.png]
Code source: Lucy Owen
License: MIT

load
import timecorr as tc
import numpy as np
from matplotlib import pyplot as plt

load helper functions
from timecorr.helpers import plot_weights

define number of timepoints
T = 100

define width
width = 10

define functions
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}
delta = {'name': 'δ', 'weights': tc.eye_weights, 'params': tc.eye_params}
gaussian = {'name': 'Gaussian', 'weights': tc.gaussian_weights, 'params': {'var': width}}
mexican_hat = {'name': 'Mexican hat', 'weights': tc.mexican_hat_weights, 'params': {'sigma': width}}

plot delta
plot_weights(delta['weights'](T), title='Delta')
plt.show()
plt.clf()

plot gaussian
plot_weights(gaussian['weights'](T), title='Gaussian')
plt.show()
plt.clf()

plot laplace
plot_weights(laplace['weights'](T), title='Laplace')
plt.show()
plt.clf()

plot mexican hat
plot_weights(mexican_hat['weights'](T), title='Mexican hat')
plt.show()
plt.clf()

Total running time of the script: (0 minutes 0.199 seconds)

Download Python source code: plot_explore_kernels.py

Download Jupyter notebook: plot_explore_kernels.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Note

Click here to download the full example code

Simulate subject data

In this example, we simulate data

[image: ../_images/sphx_glr_plot_simulate_data_001.png]
Code source: Lucy Owen
License: MIT

load timecorr
import timecorr as tc
import seaborn as sns
import matplotlib.pyplot as plt

simulate some data
data, corrs = tc.simulate_data(datagen='block', return_corrs=True, set_random_seed=True, S=1, T=100, K=10, B=5)

calculate correlations - returned squareformed
tc_vec_data = tc.timecorr(tc.simulate_data(), weights_function=tc.gaussian_weights, weights_params={'var': 5}, combine=tc.helpers.corrmean_combine)

convert from vector to matrix format
tc_mat_data = tc.vec2mat(tc_vec_data)

plot the 3 correlation matrices different timepoints

sns.heatmap(tc_mat_data[:, :, 48])
plt.show()
plt.clf()
sns.heatmap(tc_mat_data[:, :, 50])
plt.show()
plt.clf()
sns.heatmap(tc_mat_data[:, :, 52])
plt.show()
plt.clf()

Total running time of the script: (0 minutes 0.423 seconds)

Download Python source code: plot_simulate_data.py

Download Jupyter notebook: plot_simulate_data.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Note

Click here to download the full example code

Simulate subject data

In this example, we simulate data

Code source: Lucy Owen
License: MIT

load timecorr
import timecorr as tc
import seaborn as sns

simulate some data
data, corrs = tc.simulate_data(datagen='block', return_corrs=True, set_random_seed=True, S=1, T=100, K=10, B=5)

calculate correlations - returned squareformed
tc_vec_data = tc.timecorr(tc.simulate_data(), weights_function=tc.gaussian_weights, weights_params={'var': 5}, combine=tc.helpers.corrmean_combine)

convert from vector to matrix format
tc_mat_data = tc.vec2mat(tc_vec_data)

plot the 3 correlation matrices different timepoints

sns.heatmap(tc_mat_data[:, :, 48])
sns.heatmap(tc_mat_data[:, :, 50])
sns.heatmap(tc_mat_data[:, :, 52])

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: simulate_data.py

Download Jupyter notebook: simulate_data.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Using timecorr

timecorr is used to approximate dynamic high-order correlations.
There are two steps to timecorr:

	Calculate dynamic correlations

	Dimensionally reduce back to the original size of the data

By repeating these steps, you can approximate higher-order correlations
in a computationally tractable way. Although both of these steps can be
accomplished in just a single, we’ll go through and break it down.

Load in required libraries

import timecorr as tc
import numpy as np
import seaborn as sns
import warnings
warnings.simplefilter("ignore")
%matplotlib inline

Simulate some data

First, we’ll use the built in simulation function to simulate some
timeseries. By default, the simulate_data function will return a 100
samples from 1 subject, using ramping data generation function with 10
features and 5 blocks, but you can specify the number of time samples
with T, the number of subjects with S, and number of features
with K. You can also set a random seed to get consistent results
across simulations. If you want further information on simulating data,
check out the simulate API page.

simulate 1 subject's timeseries
sim_1 = tc.simulate_data(S=1, T=200, K=300, set_random_seed=100)

output for 1 subject is an array
print('shape : ' + str(np.shape(sim_1)))
print('type : ' + str(type(sim_1)))

shape : (200, 300)
type : <class 'numpy.ndarray'>

simulate 3 subjects' timeseries
sim_3 = tc.simulate_data(S=3, T=200, K=300, set_random_seed=100)

output for 3 subjects is a list of arrays
print('shape : ' + str(np.shape(sim_3)))
print('type : ' + str(type(sim_3)))
print('type for sim_3[0] : ' + str(type(sim_3[0])))

shape : (3, 200, 300)
type : <class 'list'>
type for sim_3[0] : <class 'numpy.ndarray'>

Calculate dynamic correlations

Now that we have a list of arrays of simulated timeseries data, we can
start using timecorr. Let’s start by going over the way we calculate
dynamic correlations. We use a kernel based approach, and you can
specify but the type of kernel with weights_function and the width
with weights_params that you want to use to calculate the
correlations.

For this example, we’re going to use a gaussian kernel and a width of 5.
Here’s how:

specify kernel:
width = 5
gaussian = {'name': 'Gaussian', 'weights': tc.gaussian_weights, 'params': {'var': width}}

calcuate the dynamic correlations use a gaussian kernel and width of 5 for 1 simulate subject
vec_corrs = tc.timecorr(sim_1, weights_function=gaussian['weights'], weights_params=gaussian['params'])

timecorr returns a vectorized version of the correlation matrices.
Specifically, the upper triangle of correlation matrices. If you want
the full correlation matrices, use the vec2mat function. Also,
mat2vec converts them back to the vectorized version.

returns moment-by-moment correlations, but just the upper triangle for the matrices
print('vectorized shape : ' + str(np.shape(vec_corrs)))

use the vec2mat function to convert vectorized correlations to moment-by-moment full correlations
mat_corrs = tc.vec2mat(vec_corrs)

return the dynamic full correlations
print('matrix shape : ' + str(np.shape(mat_corrs)))

vectorized shape : (200, 45150)
matrix shape : (300, 300, 200)

Let’s plot one of these full correlation matrices.

sns.heatmap(mat_corrs[:, :, 100])

<matplotlib.axes._subplots.AxesSubplot at 0x116d1d518>

[image: ../_images/timecorr_notebook_15_1.png]
Ok let’s now calculate the dynamic correlations for for the 3 simulated
subjects. The default cfun calculates a continuous verison of
Inter-Subject Functional Connectivity (Simony et al. 2017). If only one
data array is passed (rather than a list), the default cfun returns the
moment-by-moment correlations for that array. The default for the
combine function is none, but for this example we’ll use
corrmean_combine which calcuates the average correlations across
matrices. For more information on the different function options, please
check out the API documenation.

calcuate the dynamic isfc correlations use a Laplace kernel
and width of 10 for 3 simulated subjects, and take the element-wise average correlations across matrices.
width = 10
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}

dyna_corrs = tc.timecorr(sim_3, combine=tc.corrmean_combine,
 weights_function=laplace['weights'], weights_params=laplace['params'])

again, this returns the vectorized version of the dynamic correlations
print('vectorized shape : ' + str(np.shape(dyna_corrs)))

vectorized shape : (200, 45150)

Higher order correlations

Ok, now that we’ve gone over how to calculate dynamic correlations,
let’s walk through reducing the correlations back to the original size
of the data using the rfun parameter. Again, you have several
options. If you want more information, please checkout the API
documentation.

The default for rfun is None, which we used for calculating the
dynamic correlations, but in this example we’ll use PCA.

approximate the dynamic isfc correlation, using a Laplace kernel, width 10, and reducing using PCA
width = 10
laplace = {'name': 'Laplace', 'weights': tc.laplace_weights, 'params': {'scale': width}}

dyna_corrs_reduced = tc.timecorr(sim_3, rfun='PCA',
 weights_function=laplace['weights'], weights_params=laplace['params'])

this returns the approximated dynamic correlations the same size as the original data
print('original shape : ' + str(np.shape(sim_3)))
print('reduced shape : ' + str(np.shape(dyna_corrs_reduced)))

original shape : (3, 200, 300)
reduced shape : (3, 200, 300)

To calculate higher-order correlations, you can repeat this process up
to any order you want. For example, if we want to calculate correlations
up to the second order, we repeat this process twice.

order_0 = sim_3

order_1 = tc.timecorr(order_0, rfun='PCA', weights_function=laplace['weights'], weights_params=laplace['params'])

order_2 = tc.timecorr(order_1, rfun='PCA', weights_function=laplace['weights'], weights_params=laplace['params'])

Ok, and that’s it!

 _static/minus.png

_static/no_image.png

_images/sphx_glr_decode_by_weighted_level_thumb.png

_static/up-pressed.png

_images/sphx_glr_plot_explore_kernels_001.png

_static/up.png

_images/sphx_glr_calculate_dynamic_correlations_thumb.png

_static/plus.png

_images/sphx_glr_decode_by_level_thumb.png

_images/sphx_glr_plot_simulate_data_thumb.png

_images/timecorr_notebook_15_1.png

_images/sphx_glr_plot_explore_kernels_thumb.png

_images/sphx_glr_plot_simulate_data_001.png

_static/100_factors.gif
I:0.0B
0.04
—-0.00

--0.04

I~—0.08

_static/ajax-loader.gif

_images/100_factors.gif
I:0.0B
0.04
—-0.00

--0.04

I~—0.08

nav.xhtml

 Table of Contents

 		
 timecorr: A Python toolbox for calculating dynamic correlations and exploring higher order correlations

_static/comment-close.png

_static/comment.png

_static/broken_example.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

